Wind Energy BMT

Importance of Wind Resource Estimation

Wind energy is emerging as the most economical form of renewable energy with Levelised Cost of Electricity now at grid parity levels and below electricity from fossil fuel-powered plants.

8 April 2021

Coastal Development and Infrastructure Energy and Resources Environment and Water

Importance of Wind Resource Estimation

Wind energy is emerging as the most economical form of renewable energy with Levelised Cost of Electricity (LCOE) now at grid parity levels and below electricity from fossil fuel-powered plants. Unlike raw materials like coal, crude oil, or natural gas, wind offers clean electricity with no pollutants and immune from fuel price volatility.

There are no environmental risks or degradation from the exploration, extraction, transport, shipment, processing, or disposal of fuel. The wind energy output relies on the wind resource present on-site. Therefore, quantifying the wind resource and the energy production has become a pivotal activity in the life cycle of a wind project because it governs the financial viability of the project.

Wind resource estimation is important because it is used to derive the average annual energy production (AEP) of the wind power plant which essentially determines the revenues and cash flow of the project development. During the feasibility and bankability stage of the project, this information is used in the financial analysis of the project which is important in taking the Final Investment Decision (FID). For instance, if the AEP is overestimated, the risk of the project not achieving the intended IRR would put the development under jeopardy for the investors during the operations stage.

There are many stages in the life cycle of a wind energy project. In Pre-feasibility stage, it involves the determination of the potential site for feasible wind projects and mapping the wind resources to establish a shortlist of regions. This involves using easily available wind data and translating it to hub height to derive the high-level AEP to qualify the sites.

During the feasibility stage, the wind information needs to be worked to improve resolution since the individual turbine in the wind farms needs to be laid to derive the sea lease area, and also the configuration needs to arrive at to take into consideration the relative distance between the turbines to account for loss due to turbulence due to upwind turbine. This often involves using the available wind information and translating it to turbine spacing resolution and hub heights to derive the AEP and wind farm layout. At this stage, the AEP accuracy is +/-50%.

During the design and engineering stage, before the Engineering, Procurement and Construction (EPC) start, site surveys and LIDAR measurements are to calibrate the existing data since not only will we have to compute annual energy production (AEP), the losses and uncertainties will have to be accounted to prepare datasheets and conduct structural analysis of the foundation or mooring.

Last but not the least, offshore wind project development is characterised by evolving equity and lender finance infusion. The accuracy and robustness of wind resource estimation stage assumes high importance in this context since during the due diligence, the financier look to reduce uncertainty in their future cash flow.

BMT has 38 years of Metocean data with capabilities to model and translates these to the required accuracy. BMT can scope survey activities so that site measurements can be acquired to required accuracy and resolution to calibrate the historical data and to provide good fit projections for the life of the developments. The analysis incorporates extreme events and the return periods.

Site related activities such as Permits, Environmental Impact Assessment (EIA), Logistics, Grid Interconnection may occur in parallel with wind resource estimation. PPA negotiation with a purchasing utility, Power purchase agreements, financing, procurement, construction, and operations are the steps follows wind resource estimation.

BMT capabilities

BMT is a leading international multi-disciplinary maritime engineering, science, and technology consultancy providing a broad range of products and services across the energy and environment, defence and transport sectors. We have been providing specialised support to the development and operation of offshore renewable energy projects since the early 1980s. We provide an extensive range of services, such as:

1. Metocean Information Services

  • Instrumentation Services
  • Environmental Services
  • Metocean Design Criteria
  • Operability Statistics and Assessments
  • Metocean Brochure

2. Design and Engineering

  • Marine and Systems Engineering
  • Foundation Design
  • Scour Protection Design
  • Naval architecture
  • Floating Solar Engineering
  • Hydrodynamic Analysis
  • Static and Dynamic Mooring Analysis
  • Offshore Logistics Optimization
  • Waiting on Weather Analysis (WoW)
  • Port Readiness Assessment to support offshore wind

3. Foundation Design and Installation

  • Geotechnical Engineering
  • Concrete Structures
  • Steel Structures

4. Reliability, Availability, and Data Services

  • Maintenance and Support Costs
  • Reliability and Availability Assessment
  • Intelligent Data Systems 

5. Risk and Safety Assessments

  • Risk Assessment and Management
  • Port Design and Operations
  • Marine Operations and Transportation

6. Specialist Vessel Design

  • Windfarm Support Vessels (WFSV)
  • Crew Transfer Vessel (CTV)
  • Active Fender System (AFS)
  • Specialised Vessel Design Brochure

7. Navigation

  • Navigation Risk and Impact Assessment
  • Traffic Survey
  • Computer Simulation

8. Strategic Advice

With reference to recent offshore wind projects, we have done:

  • Metocean data provision
  • Resource estimation, loadings, and prediction of extreme events
  • Reliability of offshore wind turbines
  • Design of wind farm vessels
  • Technical due diligence on various wave energy projects
  • Maritime survey services
  • Reducing crew transfer vessel and emissions.


Meet the Expert

Cho Wutyi Thin

Civil & Structural Engineer, Maritime Structures

Cho Wutyi Thin

Civil & Structural Engineer, Maritime Structures

Cho has been working as a structural engineer after completing a Masters at the University of Melbourne. She has undertaken feasibility studies, reviews, structural design assessments, and detailed designs of maritime structures to meet appropriate technical standards and the requirements of the client. Moreover, she has considerable experience in construction management of residential and commercial development projects. 

Share this

Related market insights